HSC Physics Data and Formula Sheet

View the Physics Data and Formula Sheet provided in the HSC Exam. Get familiar with the important constants and formulas required to answer Physics exam questions.

What is the HSC Physics Data and Formula Sheet?

All students are provided with the Physics Data and Formula Sheet in the HSC Physics Exam.

The Physics Data Sheet contains important constants such as charge of an electron and Plank constant that are frequently used in quantitative analysis.

The Physics formula sheet contains formulas of key Physics concepts that are taught in the Year 11 & 12 Physics course.

 

HSC Physics Data:

Charge on electron, q_e -1.602 \times 10^{-19} \ C
Mass of electron, m_e 9.109 \times 10^{-31} \ kg
Mass of neutron, m_n 1.675 \times 10^{-27} \ kg
Mass of proton m_p 1.673 \times 10^{-27} \ kg
Speed of sound in air 340 \ ms^{-1}
Earth’s gravitational acceleration, g 9.8 \ ms^{-2}
Speed of light, c 3.00 \times 10^8 \ ms^{-1}
Electric permittivity constant, \varepsilon_0 {8.854 \times 10^{-12} \ A^2s^4kg^{-1}m^{-3}}
Magnetic permeability constant, \mu_0 4 \pi \times 10^{-7} \ NA^{-2}
Universal gravitational constant, G 6.67 \times 10^{-11} \ Nm^2kg^{-2}
Mass of Earth, M_E 6.0 \times 10^{24} \ kg
Radius of Earth, r_E 6.371 \times 10^6 \ m
Planck constant, h 6.626 \times 10^{-34} \ Js
Rydberg constant, R (hydrogen) 1.097 \times 10^7 \ m^{-1}
Atomic mass unit, u 1.661 \times 10^{-27} \ kg \\\\ 931.5 \ MeV/c^2
1 eV 1.602 \times 10^{-19} \ J
Density of water, \rho 1.00 \times 10^3 \ kgm^{-3}
Specific heat capacity of water 4.18 \times 10^3 \ Jkg^{-1}K^{-1}
Wien’s displacement constant, b 2.898 \times 10^{-3} \ m K

Source:NSW Education Standards Authority

 

HSC Physics Formula Sheet

Motion, Forces and Gravity Formulas:

  s = ut + \frac12at^2   v = u + at
  v^2 = u^2 + 2as   \overrightarrow{F}_{net} = m \overrightarrow{a}
  \Delta U = mg\Delta h   W = F_{\parallel} = Fscos\theta
  P = \frac{\Delta E}{\Delta t}   K = \frac12mv^2
  {\Sigma \frac12 mv^2_{before} = \Sigma \frac12mv^2_{after}}   P = F_{\parallel}v = Fvcos\theta
  \Delta \overrightarrow{p} = \overrightarrow{F}_{net} \Delta t   {\Sigma m \overrightarrow{v}_{before} = \Sigma m \overrightarrow{v}_{after}}
  \omega = \frac{\Delta \theta}{t}   a_c = \frac{v^2}{r}
  \tau = r_{\perp}F = rFsin\theta   F_c = \frac{mv^2}{r}
  v = \frac{2\pi r}{T}   F = \frac{GMm}{r^2}
  U = - \frac{GMm}{r}  \large \frac{r^3}{T^2} = \frac{GM}{4\pi^2}

Source:NSW Education Standards Authority

 

Waves and Thermodynamics Formulas:

  v = f \lambda   f_{beat} = | f_2 - f_1 |
  f = \frac{1}{T}  \large f' = f \frac{(v_{wave} + v_{observer})}{(v_{wave} - v_{source})}
  dsin\theta = m \lambda   n_1sin\theta_1 = n_2sin\theta_2
  n_x = \frac{c}{v_x}   sin\theta_c = \frac{n_2}{n_1}
  I = I_{max}cos^ \theta   I_1r_1^2 = I_2r^2_2
  Q = mc \Delta T  \large \frac{Q}{t} = \frac{kA \Delta T}{d}

Source:NSW Education Standards Authority

 

Electricity and Magnetism Formulas:

  E = \frac{V}{d}   \overrightarrow{F} = q \overrightarrow{E}
  V = \frac{\Delta U}{q}   F = \frac{1}{4 \pi \varepsilon_0} \frac{q_1q_2}{r^2}
  W = qV   I = \frac{q}{t}
  W = qEd   V = IR
  B = \frac{\mu_0 I}{2 \pi r}   P = VI
  B = \frac{\mu_0NI}{L}   {F = qv_{\perp}B = qvBsin\theta}
  {\Phi = B_{\parallel}A = BAcos\theta}   F = Il_{\perp}B = IlBsin\theta
  \varepsilon = -N \frac{\Delta \Phi}{\Delta t}   \large \frac{F}{l} = \frac{\mu_0}{2\pi} \frac{I_1I_2}{r}
  \large \frac{V_p}{V_s} = \frac{N_p}{N_s}  {\tau = nIA_{\perp}B = nIABsin\theta}
  V_pI_p = V_sI_s

Source:NSW Education Standards Authority

 

Quantum, Special Relativity and Nuclear Formulas:

  \lambda = \frac{h}{mv}   t = \frac{t_0}{\sqrt{ \big( 1 - \frac{v^2}{c^2} \big)}}
  K_{max} = hf - \phi   l = l_0 \sqrt{\big( 1 - \frac{v^2}{c^2} \big)}
  \lambda_{max} = \frac{b}{T}   p_v = \frac{m_ov}{\sqrt{ \big( 1 - \frac{v^2}{c^2} \big)}}
  E = mc^2   N_t = N_0e^{-\lambda t}
  E = hf   \lambda = \frac{ln2}{t_{\frac{1}{2}}}
  \frac{1}{\lambda} = R \bigg( \frac{1}{n^2_f} - \frac{1}{n^2_i} \bigg)

Source:NSW Education Standards Authority

 

Written by DJ Kim

DJ is the founder of Learnable and has a passionate interest in education and technology. He is also the author of Physics resources on Learnable.

Share this article